Semi-Supervised Convex Training for Dependency Parsing

نویسندگان

  • Qin Iris Wang
  • Dale Schuurmans
  • Dekang Lin
چکیده

We present a novel semi-supervised training algorithm for learning dependency parsers. By combining a supervised large margin loss with an unsupervised least squares loss, a discriminative, convex, semi-supervised learning algorithm can be obtained that is applicable to large-scale problems. To demonstrate the benefits of this approach, we apply the technique to learning dependency parsers from combined labeled and unlabeled corpora. Using a stochastic gradient descent algorithm, a parsing model can be efficiently learned from semi-supervised data that significantly outperforms corresponding supervised methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title of Thesis: Learning Structured Classifiers for Statistical Dependency Parsing Learning Structured Classifiers for Statistical Dependency Parsing

In this thesis, I present three supervised and one semi-supervised machine learning approach for improving statistical natural language dependency parsing. I first introduce a generative approach that uses a strictly lexicalised parsing model where all the parameters are based on words, without using any part-of-speech (POS) tags or grammatical categories. Then I present an improved large margi...

متن کامل

Simple Semi-supervised Dependency Parsing

We present a simple and effective semisupervised method for training dependency parsers. We focus on the problem of lexical representation, introducing features that incorporate word clusters derived from a large unannotated corpus. We demonstrate the effectiveness of our approach in a series of dependency parsing experiments on the Penn Treebank, and we show that our clusterbased features yiel...

متن کامل

Working with a small dataset - semi-supervised dependency parsing for Irish

We present a number of semi-supervised parsing experiments on the Irish language carried out using a small seed set of manually parsed trees and a larger, yet still relatively small, set of unlabelled sentences. We take two popular dependency parsers – one graph-based and one transition-based – and compare results for both. Results show that using semisupervised learning in the form of self-tra...

متن کامل

Ambiguity-aware Ensemble Training for Semi-supervised Dependency Parsing

This paper proposes a simple yet effective framework for semi-supervised dependency parsing at entire tree level, referred to as ambiguity-aware ensemble training. Instead of only using 1best parse trees in previous work, our core idea is to utilize parse forest (ambiguous labelings) to combine multiple 1-best parse trees generated from diverse parsers on unlabeled data. With a conditional rand...

متن کامل

Fourth Workshop on Statistical Parsing of Morphologically Rich Languages

We present a number of semi-supervised parsing experiments on the Irish language carried out using a small seed set of manually parsed trees and a larger, yet still relatively small, set of unlabelled sentences. We take two popular dependency parsers – one graph-based and one transition-based – and compare results for both. Results show that using semisupervised learning in the form of self-tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008